

Mining Entity Synonyms with Efficient Neural Set Generation

Code: <u>https://github.com/mickeystroller/SynSetMine-pytorch</u>

Jiaming Shen¹, Ruiliang Lyu², Xiang Ren³, Michelle Vanni⁴, Brian Sadler⁴, Jiawei Han¹ ¹University of Illinois at Urbana-Champaign ²Shanghai Jiao Tong University

³University of Southern California ⁴U.S. Army Research Laboratory

Presented by Jiaming @ AAAI 2019

Data: <u>http://bit.ly/SynSetMine-dataset</u>

- Introduction
- Related Work
- Problem Formulation
- Our Proposed Framework
- Experiments
- Summary

Outline

Introduction

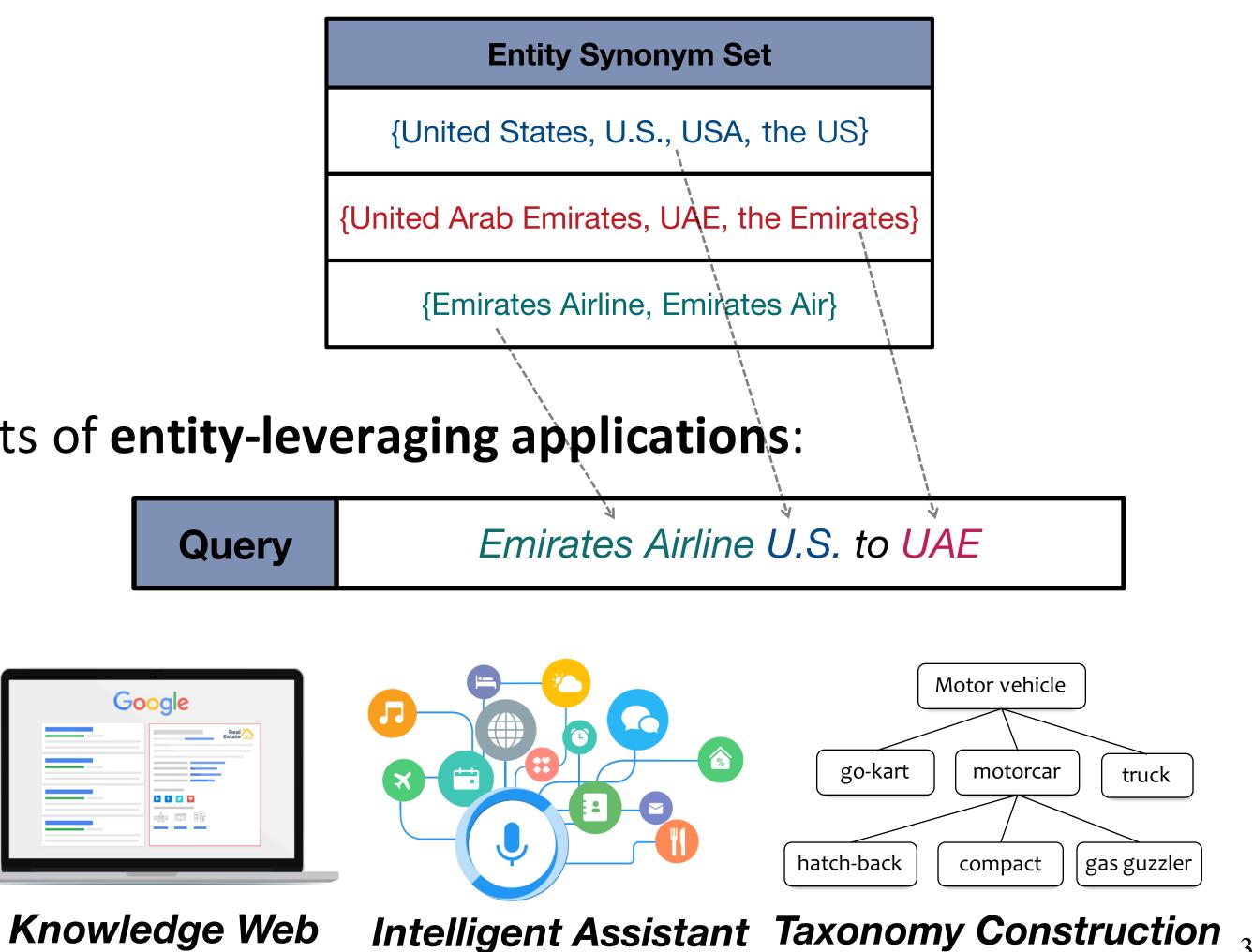
- - Singular/Plural Derivation
 - Acronym/Abbreviation
 - Slogan/Slang

.....

....

- Mining entity synonym sets can benefit lots of **entity-leveraging applications**:
 - Query Understanding & Web Search
 - Question Answering & Dialog System
 - Taxonomy Construction & Enrichment -

An **entity synonym set** is a set of terms (*i.e.*, words or phrases) referring to the same entity:



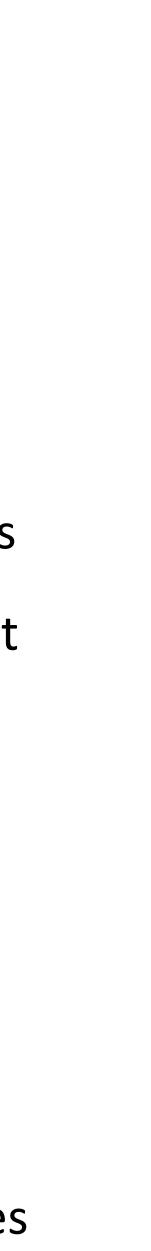
Related Work

• Approach 1: Ranking + Pruning

- Given a query term, first rank all candidate terms, then prune the rank list into an output set
- For example, "United States" -> ["U.S.", "U.S.A", "UAE", ...,] -> {"U.S.", "U.S.A"}
- Pros: 1) leverage heterogeneous training signals; 2) suitable for online query-dependent applications
- Cons: 1) ignore the relation between candidate terms; 2) non-trivial to convert rank list to set output

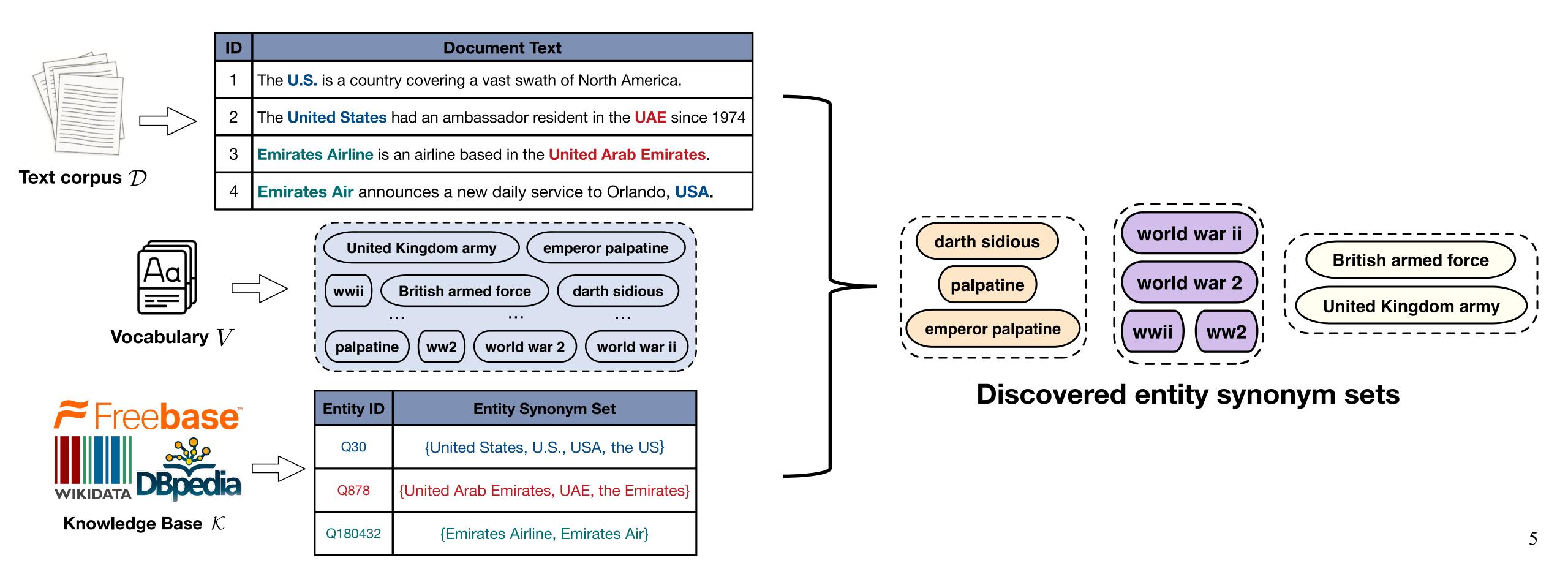
• Approach 2: Synonymy Detection + Organization

- Given a vocabulary, first find all synonym pairs, then aggregation these pairs into synonym sets
- For example, ["U.S.", "U.S.A", "UAE", "the US", "the Emirates", ...] -> [("U.S.", "U.S.A"), ("U.S.", "the US"), ("UAE", "the Emirates")] -> {{"U.S.", "U.S.A", "the US"}, {"UAE", "the Emirates"}}
- Pros: 1) model the candidate term relations; 2) return all synonym sets in vocabulary
- Cons: 1) cannot leverage signals for synonym organization; 2) error propagation between two phases



Our Problem Formulation

- knowledge base K (consists of known entity synonym sets)
- **Output**: All entity synonym sets consisting of terms in V



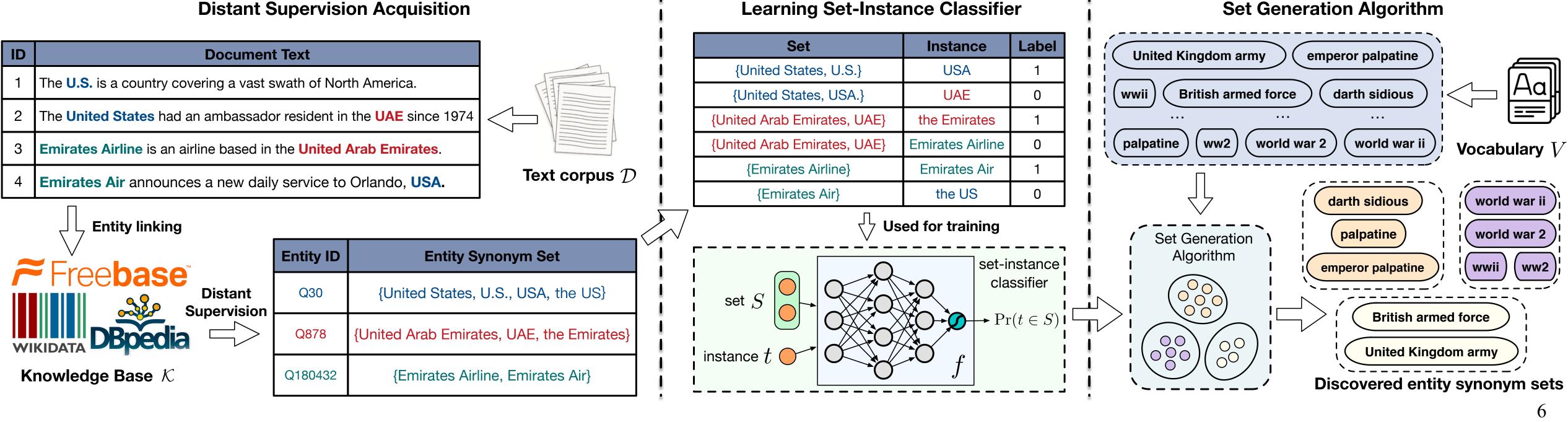
Input: (1) a text corpus D, (2) a vocabulary V (i.e., a list of terms) derived from D, and (3) a

Our Proposed Framework: SynSetMine

SynSetMine framework consists of three major steps:

- Step 1: Acquire Distant Supervision by entity linking -
- Step 2: Learn Set-Instance Classifier using distant supervision -
- Step 3: Apply Set Generation Algorithm based on learned classifier

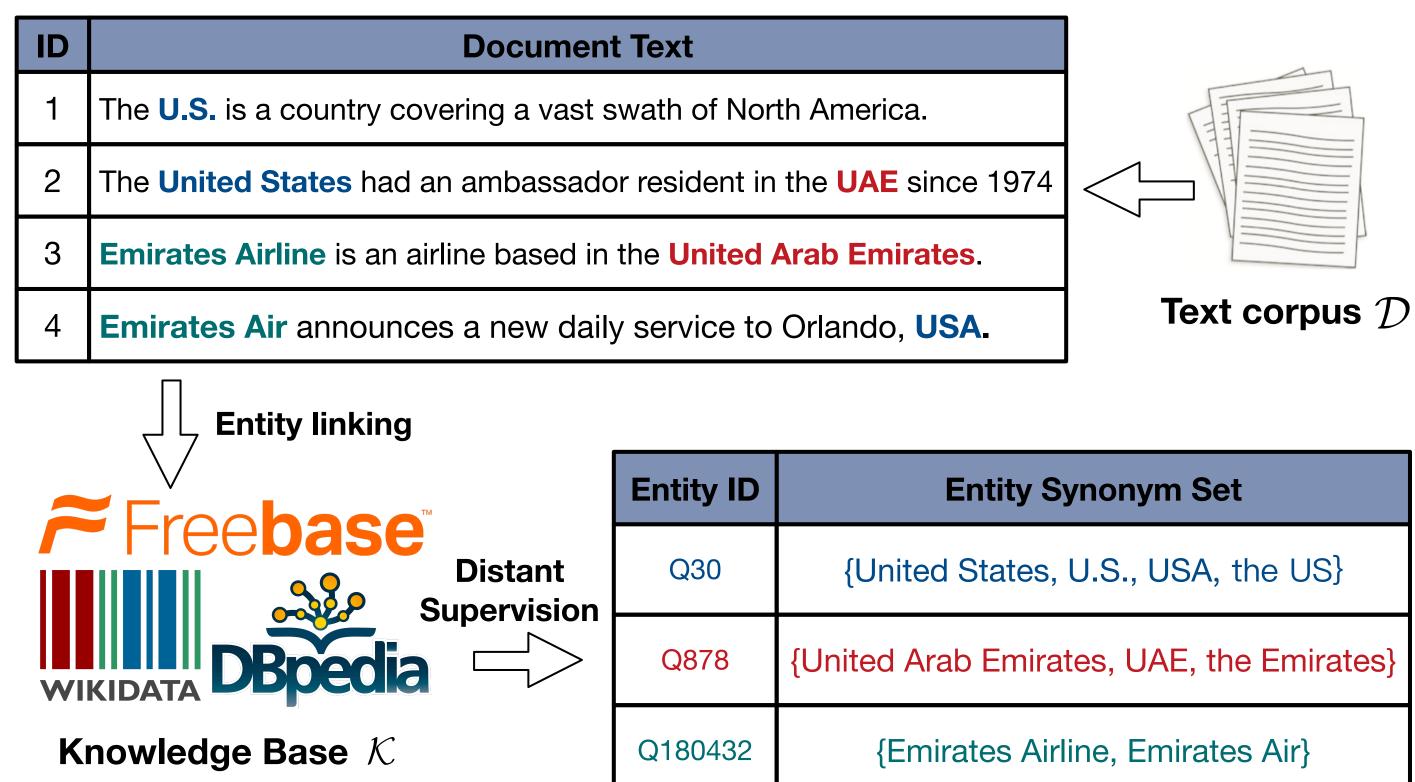
Distant Supervision Acquisition



Learning Set-Instance Classifier

Step 1: Distant Supervision Acquisition

- Use entity linkers to map in-corpus text (*i.e.*, entity mentions) to entities in knowledge base
- Group all entity mentions that linked to the same entity as a training entity synonym set

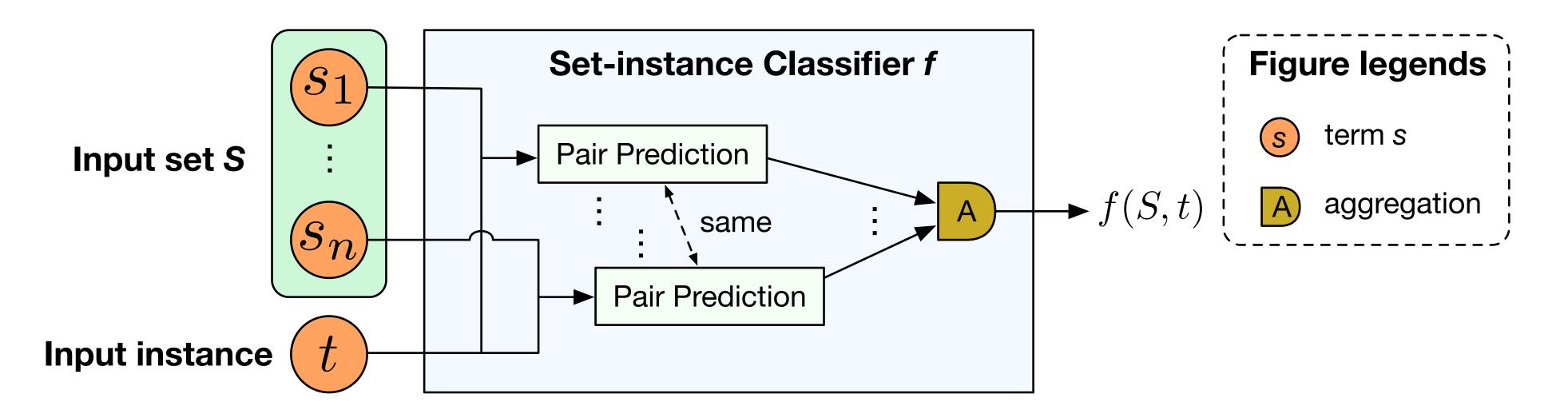


Distant Supervision Acquisition

Entity ID	Entity Synonym Set			
Q30	{United States, U.S., USA, the US}			
Q878	{United Arab Emirates, UAE, the Emirates			
Q180432	{Emirates Airline, Emirates Air}			

Step 2: Set-Instance Classifier Architecture

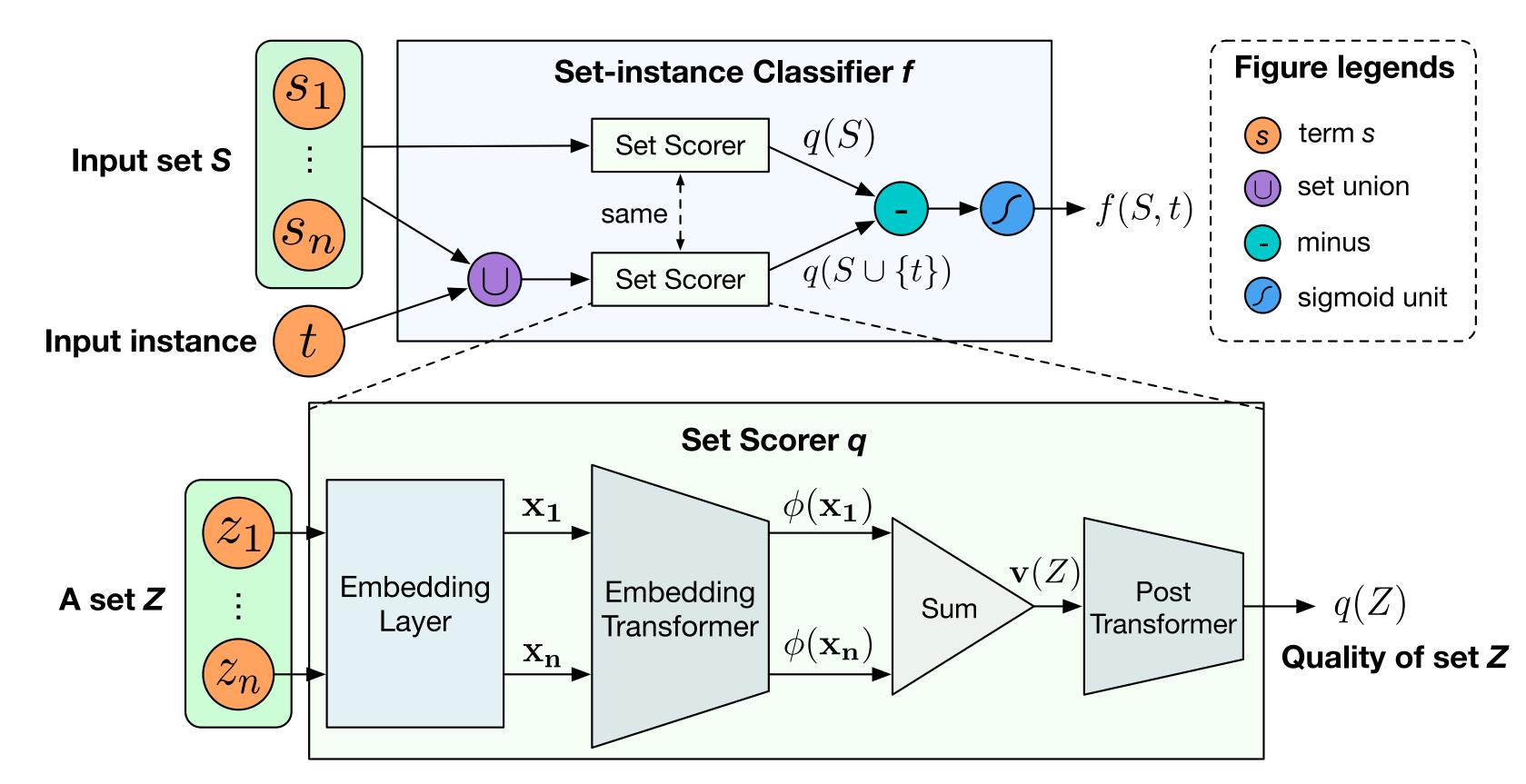
- A set-instance classifier f(S, t) returns the p an entity synonym set S
 - Need to be invariant to the ordering of elements in set S
 - For example, if f({"USA", "the U.S."}, "U.S.") is 0.9, then f({"the U.S.", "USA"}, "U.S.") should also be 0.9
- An intuitive way to achieve this goal is **aggregate pair prediction** results:
 - However, this approach fails to model the holistic set semantics



A set-instance classifier f(S, t) returns the probability that an instance t (i.e., a term) belongs to

Step 2: Set-Instance Classifier Architecture (Cont'd)

- Our approach in SynSetMine:
 - Use set representation learning to construct a set scorer which outputs the quality score of a set
 - Construct the set-instance classifier using the set scorer



Step 2: Learning Set-Instance Classifier

- - **Completely random**: ({"Emirates Air", "Emirates Airline"}, "the US", 0)
 - Share token: ({"United Arab <u>Emirates</u>", "UAE"}, "<u>Emirates</u> Air", 0)
 - **Mixture** of above two strategies

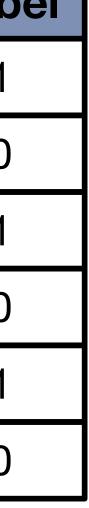
Entity ID	Entity Synonym Set		
Q30	{United States, U.S., USA, the US}		
Q878	{United Arab Emirates, UAE, the Emirates		
Q180432	{Emirates Airline, Emirates Air}		

Original Distant Supervision Format

• To learn the set-instance classifier, we need to convert the distant supervision (in the form of entity sets) to a collection of set-instance pairs, using different negative sampling strategies:

Set	Instance	Lab
{United States, U.S.}	USA	1
{United States, USA.}	UAE	0
{United Arab Emirates, UAE}	the Emirates	1
{United Arab Emirates, UAE}	Emirates Airline	0
{Emirates Airline}	Emirates Air	1
{Emirates Air}	the US	0

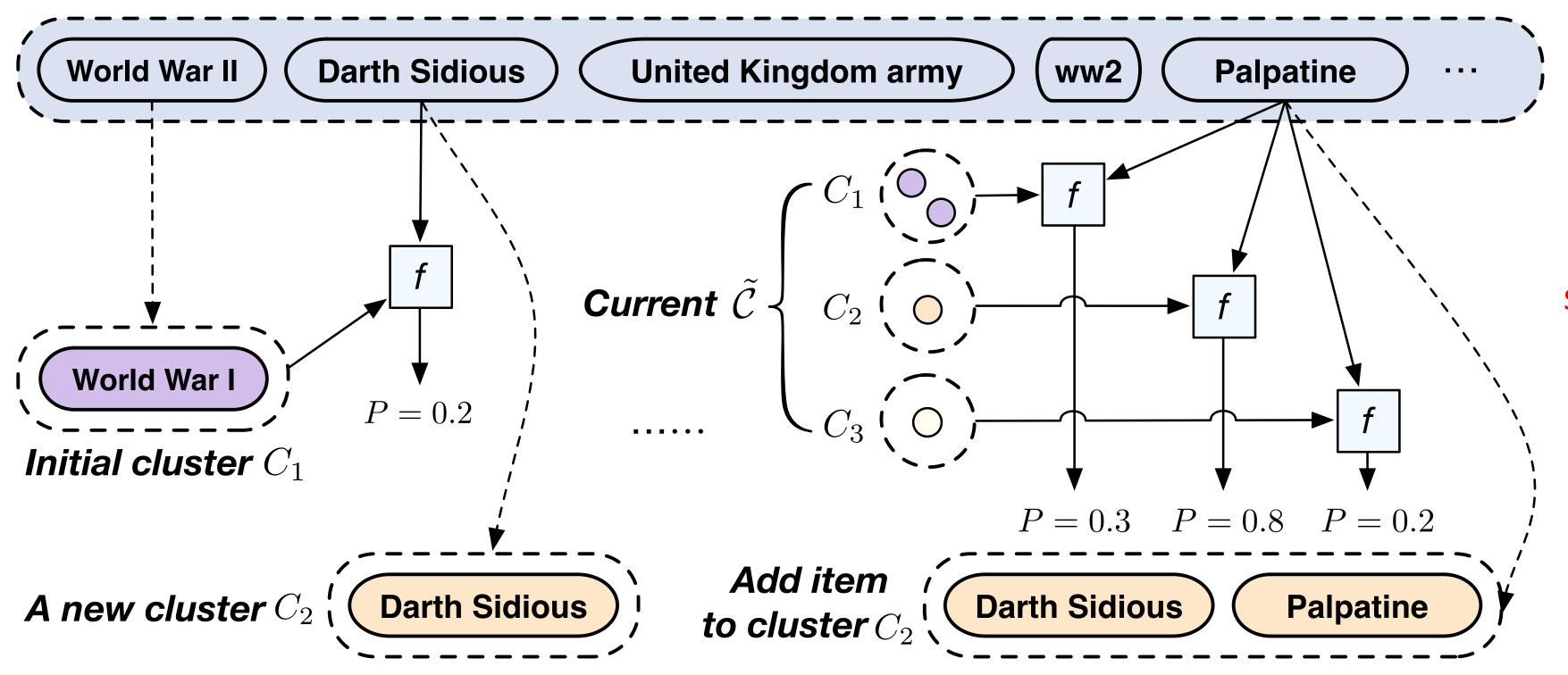
Converted Format for Training Set-Instance Classifier



Step 3: Apply Set Generation Algorithm

- Apply learned set-instance classifier to extract new synonym sets in the vocabulary
 - Enumerate the vocabulary once and output all synonym sets in the vocabulary -
 - -

Vocabulary V



Determine for each term whether it can be put into an existing cluster or create a new singleton cluster

Leverage learned set-instance classifier to make the decision

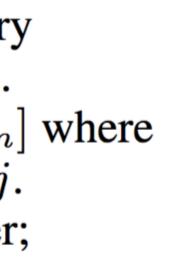
11

Step 3: Apply Set Generation Algorithm (Cont'd)

• Apply learned set-instance classifier to extract new synonym sets in the vocabulary

Algorithm 1: Set Generation Algorithm

Input: A set-instance classifier f; An input vocabulary $V = (s_1, s_2, \dots, s_{|V|})$; A threshold $\theta \in [0, 1]$. **Output:** m entity synonym sets $C = [C_1, C_2, \ldots, C_m]$ where $C_i \subseteq V, \cup_{i=1}^m C_i = V, C_i \cap C_j = \emptyset, \forall i \neq j.$ 1 $\mathcal{C} \leftarrow [\{s_1\}];$ // initialize the first single-element cluster; **2** for *i* from 2 to |V| do $best_score = 0;$ 3 $best_j = 1;$ 4 for *j* from 1 to $|\mathcal{C}|$ do 5 if $f(C_j, s_i) > best_score$ then 6 $best_score \leftarrow f(C_j, s_i);$ 7 $best_j \leftarrow j;$ 8 if $best score > \theta$ then 9 $C_{best_j}.add(s_i);$ 10 else 11 C.append($\{s_i\}$); //add a new cluster into the output; 12 13 Return C;



Find best matching cluster

Either add term into best matching cluster or create a new singleton cluster

Experimental Setups

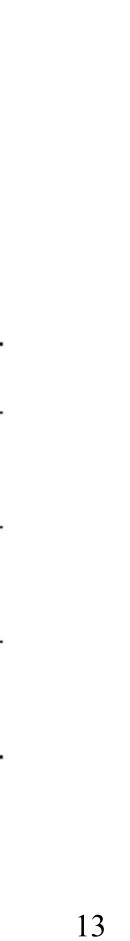
• Datasets:

- For Wiki/NYT datasets, using DBpedia Spotlight as entity Linker
- For PubMed dataset, using PubTator as entity Linker
- Available for download: <u>http://bit.ly/SynSetMine-dataset</u>

• Evaluation metrics:

- Adjusted Rand Index (ARI)
- Fowlkes-Mallows Index (FMI)
- Normalized Mutual Information (NMI)

Table 1:	Table 1: Datasets Statistics.						
Dataset	Wiki	NYT	PubMed				
#Documents	100,000	118,664	1,554,433				
#Sentences	6,839,331	3,002,123	15,051,203				
#Terms in <i>train</i>	8,731	2,600	72,627				
#Synonym sets in <i>train</i>	4,359	1,273	28,600				
#Terms in <i>test</i>	891	389	1,743				
#Synonym sets in <i>test</i>	256	117	250				



Experimental Setups (Cont'd)

Compared methods:

- Kmeans: an unsupervised feature-based clustering algorithm
- Louvain: an unsupervised community detection algorithm
- SetExpan+Louvain: use SetExpan (a set expansion algorithm) to construct graph, then apply Louvain
- COP-Kmeans: a semi-supervised clustering algorithm
- SVM+Louvain: supervised pair prediction for graph construction and then apply Louvain
- L2C: supervised learning to cluster algorithm
- SynSetMine: Our proposed approach

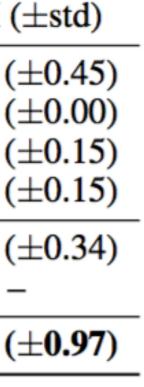
Our model Implementation: https://github.com/mickeystroller/SynSetMine-pytorch

14

- Overall clustering performance:
 - SetExpan+Louvain > Louvain: use SetExpan for graph construction is useful
 - COP-Kmeans > Kmeans: additional supervision signals is useful
 - SVM+Louvain & L2C's bad performance: effectively use supervision signals is challenging
 - SynSetMine > all: the effectiveness of our proposed approach

Kmeans Louvain $34.35 (\pm 1.06)$ $42.25 (\pm 0.00)$ $35.47 (\pm 0.96)$ $46.48 (\pm 0.00)$ $86.98 (\pm 0.27)$ $92.58 (\pm 0.00)$ $28.87 (\pm 1.98)$ $21.83 (\pm 0.00)$ $30.85 (\pm 1.76)$ $30.58 (\pm 0.00)$ $83.71 (\pm 0.57)$ $90.13 (\pm 0.00)$ $48.68 (\pm 1.93)$ $46.58 (\pm 0.00)$ $49.86 (\pm 1.79)$ $52.76 (\pm 0.00)$ $88.08 (\pm 1.79)$ $90.46 (\pm 1.79)$ SetExpan+Louvain COP-Kmeans $44.78 (\pm 0.28)$ $38.80 (\pm 0.51)$ $44.95 (\pm 0.28)$ $39.96 (\pm 0.49)$ $92.12 (\pm 0.02)$ $90.31 (\pm 0.15)$ $43.92 (\pm 0.90)$ $33.80 (\pm 1.94)$ $44.31 (\pm 0.93)$ $34.57 (\pm 2.06)$ $90.34 (\pm 0.11)$ $87.92 (\pm 0.30)$ $58.91 (\pm 0.08)$ $49.12 (\pm 0.85)$ $61.87 (\pm 0.07)$ $51.92 (\pm 0.83)$ $92.23 (\pm 0.73)$ $89.91 (\pm 0.83)$ SVM+Louvain L2C $6.03 (\pm 0.73)$ $12.87 (\pm 0.22)$ $7.75 (\pm 0.81)$ $19.90 (\pm 0.24)$ $25.43 (\pm 0.13)$ $73.47 (\pm 0.29)$ $3.64 (\pm 0.42)$ $12.71 (\pm 0.89)$ $51.02 (\pm 0.27)$ $16.66 (\pm 0.68)$ $7.75 (\pm 0.96)$ $70.23 (\pm 1.20)$ $8.79 (\pm 1.03)$ $ 31.08 (\pm 0.23)$ $-$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Method		Wiki			NYT			PubMed	
Louvain SetExpan+Louvain COP-Kmeans $42.25(\pm 0.00)$ $46.48(\pm 0.00)$ $92.58(\pm 0.00)$ $21.83(\pm 0.00)$ $30.58(\pm 0.00)$ $90.13(\pm 0.00)$ $46.58(\pm 0.00)$ $52.76(\pm 0.00)$ $90.46(\pm 0.00)$ SetExpan+Louvain COP-Kmeans $44.78(\pm 0.28)$ $44.95(\pm 0.28)$ $92.12(\pm 0.02)$ $43.92(\pm 0.90)$ $44.31(\pm 0.93)$ $90.34(\pm 0.11)$ $58.91(\pm 0.08)$ $61.87(\pm 0.07)$ $92.23(\pm 0.90)$ SVM+Louvain L2C $6.03(\pm 0.73)$ $7.75(\pm 0.81)$ $25.43(\pm 0.13)$ $3.64(\pm 0.42)$ $5.10(\pm 0.39)$ $21.02(\pm 0.27)$ $7.76(\pm 0.96)$ $8.79(\pm 1.03)$ $31.08(\pm 0.28)$ SVM+Louvain L2C $12.87(\pm 0.22)$ $19.90(\pm 0.24)$ $73.47(\pm 0.29)$ $12.71(\pm 0.89)$ $16.66(\pm 0.68)$ $70.23(\pm 1.20)$ $ -$		ARI (±std)	FMI (±std)	NMI (±std)	ARI (±std)	FMI (±std)	NMI (±std)	ARI (±std)	FMI (±std)	NMI (
SetExpan+Louvain COP-Kmeans $44.78(\pm 0.28)$ $38.80(\pm 0.51)$ $44.95(\pm 0.28)$ $39.96(\pm 0.49)$ $92.12(\pm 0.02)$ $90.31(\pm 0.15)$ $43.92(\pm 0.90)$ $33.80(\pm 1.94)$ $44.31(\pm 0.93)$ $34.57(\pm 2.06)$ $90.34(\pm 0.11)$ $87.92(\pm 0.30)$ $58.91(\pm 0.08)$ $49.12(\pm 0.85)$ $61.87(\pm 0.07)$ $51.92(\pm 0.83)$ $92.23(\pm 0.90)$ $89.91(\pm 0.92)$ SVM+Louvain L2C $6.03(\pm 0.73)$ $12.87(\pm 0.22)$ $7.75(\pm 0.81)$ $19.90(\pm 0.24)$ $25.43(\pm 0.13)$ $73.47(\pm 0.29)$ $3.64(\pm 0.42)$ $12.71(\pm 0.89)$ $5.10(\pm 0.39)$ $16.66(\pm 0.68)$ $21.02(\pm 0.27)$ $70.23(\pm 1.20)$ $7.76(\pm 0.96)$ $70.23(\pm 1.20)$ $8.79(\pm 1.03)$ $ 31.08(\pm 0.92)$ $-$	Kmeans	34.35 (±1.06)	35.47 (±0.96)	86.98 (±0.27)	28.87 (±1.98)	30.85 (±1.76)	83.71 (±0.57)	48.68 (±1.93)	49.86 (±1.79)	88.08 (:
COP-Kmeans $38.80(\pm 0.51)$ $39.96(\pm 0.49)$ $90.31(\pm 0.15)$ $33.80(\pm 1.94)$ $34.57(\pm 2.06)$ $87.92(\pm 0.30)$ $49.12(\pm 0.85)$ $51.92(\pm 0.83)$ $89.91(\pm 0.83)$ SVM+Louvain L2C $6.03(\pm 0.73)$ $7.75(\pm 0.81)$ $25.43(\pm 0.13)$ $3.64(\pm 0.42)$ $5.10(\pm 0.39)$ $21.02(\pm 0.27)$ $7.76(\pm 0.96)$ $8.79(\pm 1.03)$ $31.08(\pm 0.22)$ L2C $12.87(\pm 0.22)$ $19.90(\pm 0.24)$ $73.47(\pm 0.29)$ $12.71(\pm 0.89)$ $16.66(\pm 0.68)$ $70.23(\pm 1.20)$ $ -$	Louvain	42.25 (±0.00)	46.48 (±0.00)	92.58 (±0.00)	21.83 (±0.00)	30.58 (±0.00)	90.13 (±0.00)	46.58 (±0.00)	52.76 (±0.00)	90.46 (:
SVM+Louvain L2C $6.03 (\pm 0.73)$ $7.75 (\pm 0.81)$ $25.43 (\pm 0.13)$ $3.64 (\pm 0.42)$ $5.10 (\pm 0.39)$ $21.02 (\pm 0.27)$ $7.76 (\pm 0.96)$ $8.79 (\pm 1.03)$ $31.08 (\pm 0.27)$ L2C $12.87 (\pm 0.22)$ $19.90 (\pm 0.24)$ $73.47 (\pm 0.29)$ $12.71 (\pm 0.89)$ $16.66 (\pm 0.68)$ $70.23 (\pm 1.20)$ $ -$	SetExpan+Louvain	44.78 (±0.28)	44.95 (±0.28)	92.12 (±0.02)	43.92 (±0.90)	44.31 (±0.93)	90.34 (±0.11)	58.91 (±0.08)	61.87(±0.07)	92.23 (:
L2C 12.87 (±0.22) 19.90 (±0.24) 73.47 (±0.29) 12.71 (±0.89) 16.66 (±0.68) 70.23 (±1.20) -<	COP-Kmeans	38.80 (±0.51)	39.96 (±0.49)	90.31 (±0.15)	33.80 (±1.94)	34.57 (±2.06)	87.92 (±0.30)	49.12 (±0.85)	51.92 (±0.83)	89.91 (:
	SVM+Louvain	6.03 (±0.73)	7.75 (±0.81)	25.43 (±0.13)	3.64 (±0.42)	5.10 (±0.39)	21.02 (±0.27)	7.76 (±0.96)	8.79 (±1.03)	31.08 (:
SynSetMine 56.43 (±1.31) 57.10 (±1.17) 93.04 (±0.23) 44.91 (±2.16) 46.37 (±1.92) 90.62 (±1.53) 74.33 (±0.66) 74.45 (±0.64) 94.90 (±0.64)	L2C	12.87 (±0.22)	19.90 (±0.24)	73.47 (±0.29)	12.71 (±0.89)	16.66 (±0.68)	70.23 (±1.20)	_	_	_
	SynSetMine	56.43 (±1.31)	57.10 (±1.17)	93.04 (±0.23)	44.91 (±2.16)	46.37 (±1.92)	90.62 (±1.53)	74.33 (±0.66)	74.45 (±0.64)	94.90 (:

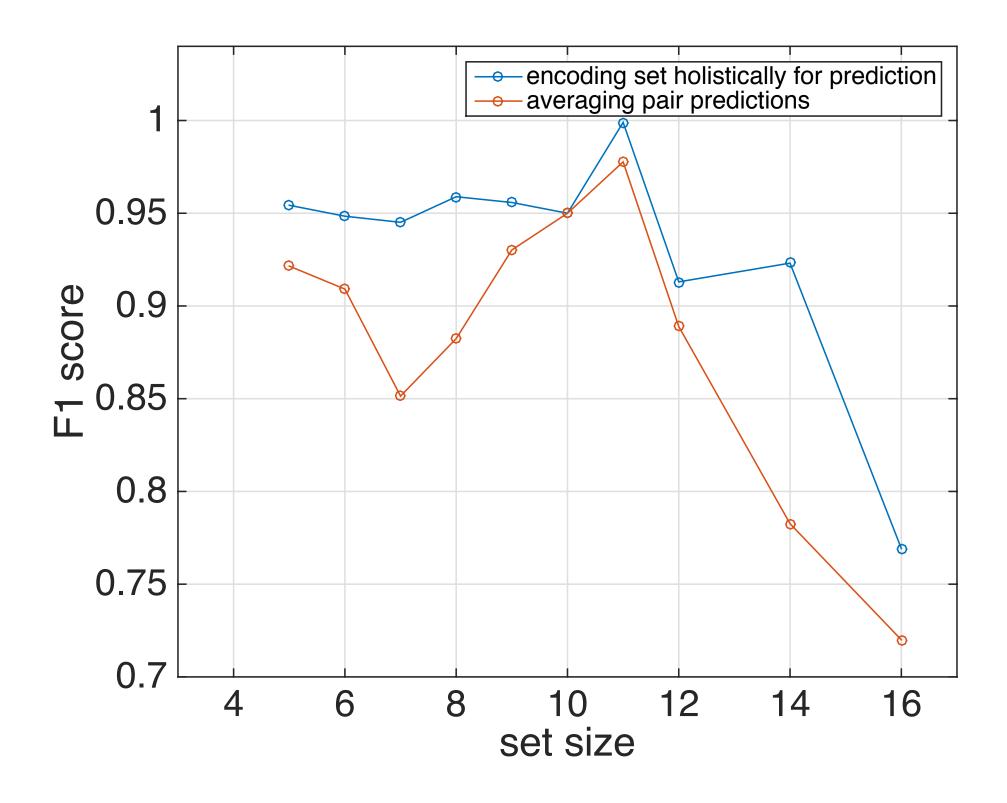
Experimental Results – Clustering Performance

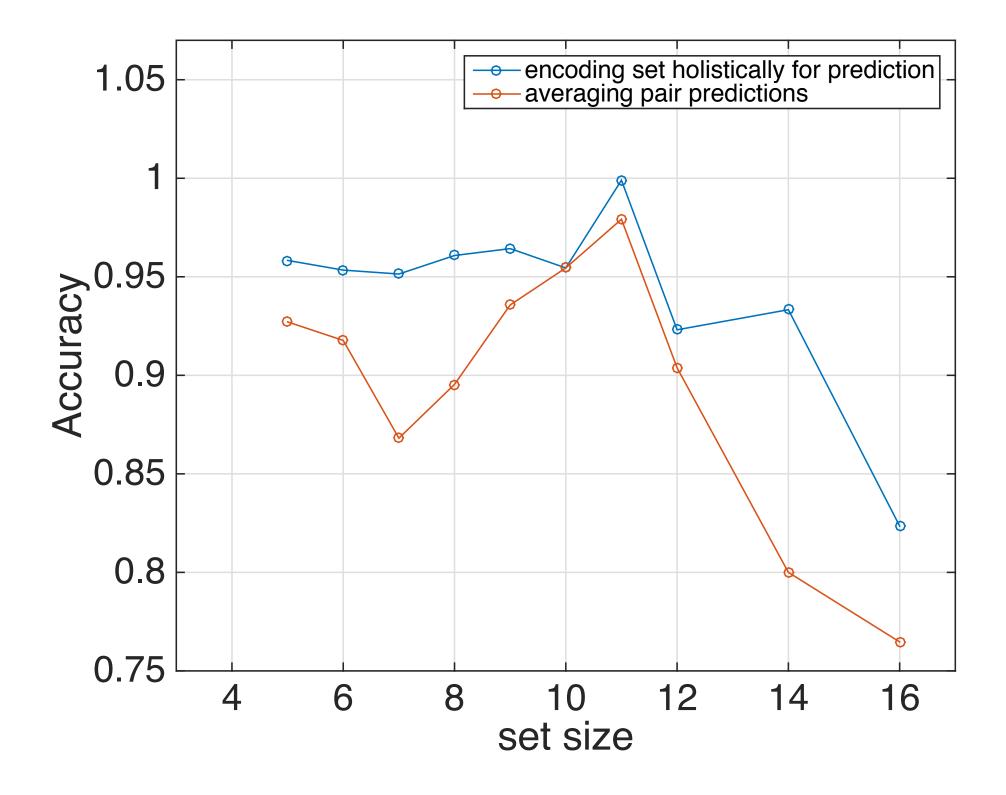


15

Experimental Results – Set-Instance Pair Prediction

- Effectiveness of using set representation learning for set-instance classifier:
 - Tested on 3486 set-instance pairs, half of them are positive pairs
 - Use F1 score and Accuracy for evaluation





Experimental Results – Efficiency Analysis

- Efficiency of set generation algorithm
 - SynSetMine is faster to train compared with the other neural network based method L2C
 - SynSetMine is the fastest during prediction stage (which returns all synonym sets in vocabulary)

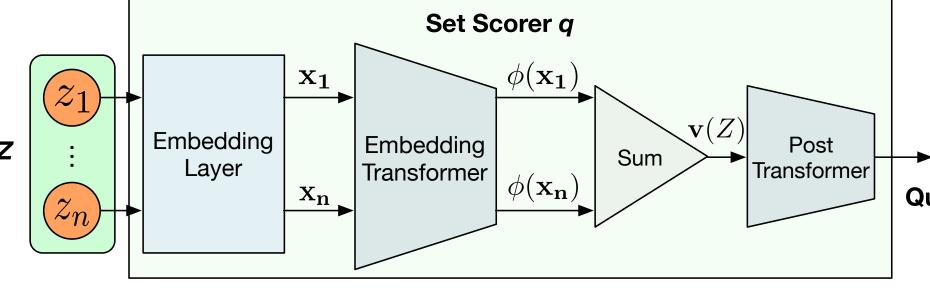
Method		Training	ç		Prediction	1
	Wiki	NYT	PubMed	Wiki	NYT	PubMed
Kmeans	_	_	_	1.82s	0.88s	2.95s
Louvain	_	_	_	3.94s	20.59s	74.6s
SetExpan+Louvain	_	_	_	323s	120s	4143s
COP-KMeans	_	—	-	249s	<u>37.94s</u>	713s
SVM+Louvain	4.9m	37s	1.3h	29.21s	5.80s	101.32s
L2C	16.8h*	30.7m*	>120h*	20.9m*	56.6s*	—
SynSetMine	48m*	6.5m*	7.5h*	0.852s*	0.348s*	1.84s*

Experimental Results – Model Architecture Analysis

- Importance of different model components:
 - Embedding Layer: Pre-trained 50-d word embedding -
 - Embedding Transformer (ET): A two-layer NN of sizes {50, X} -
 - Post Transformer (PT): A three-layer NN of sizes {X, Y, X}

-			-				
Method		Wiki			NYT		
	ARI	FMI	NMI	ARI	FMI	NMI	
No-ET No-PT	46.48	47.23 0.50	91.57 89.95	39.86 0.82	42.67 1.70	90.46 82.20	Two transformers are both Importar
Both-100-20 Both-150-30 Both-200-40 Both-250-50 Both-300-60 Both-350-60	00 53.06 00 53.82 00 57.34 00 56.26	49.56 53.27 53.99 58.13 56.51 56.10	91.21 91.96 92.36 93.10 92.92 92.69	37.64 43.20 47.03 48.89 46.65 47.40	39.37 44.08 49.65 51.33 47.30 48.37	89.33 89.57 91.00 91.19 90.01 90.14	 Recommended Architecture

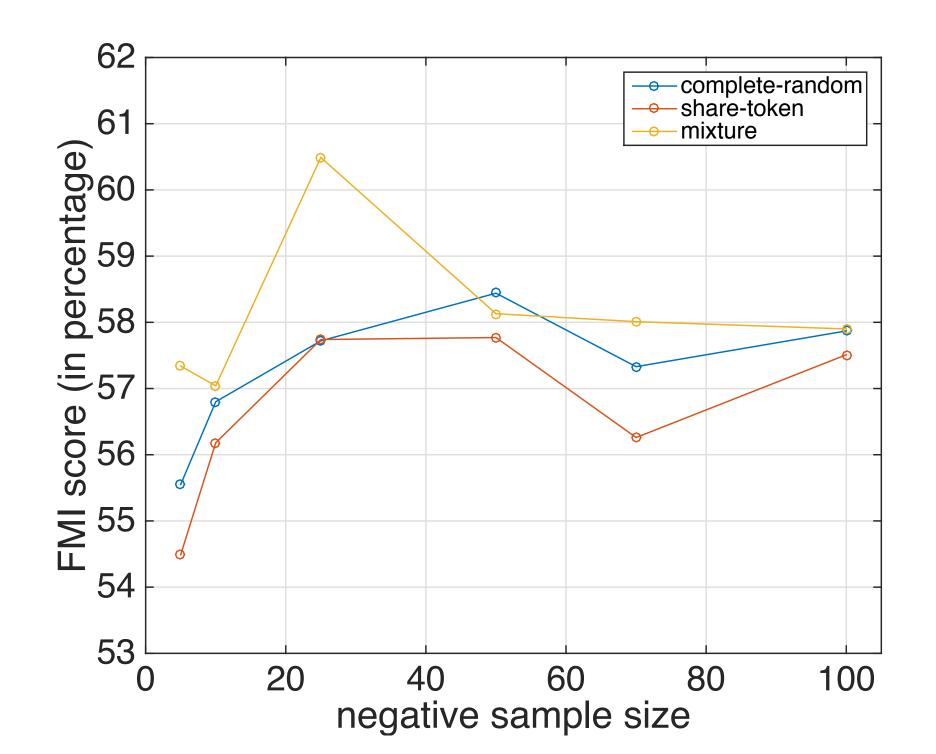
A set Z



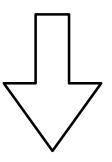
$\blacktriangleright q(Z)$ Quality of set Z

Experimental Results – Negative Sampling Analysis

- Effect of negative set-instance pair sampling methods:
 - Complete-random works surprisingly well
 - Mixture of shared-token and complete-random schemes are the best
 - The "diversity" of negative examples is important



Entity ID	Entity Synonym Set
Q30	{United States, U.S., USA, the US}
Q878	{United Arab Emirates, UAE, the Emira
Q180432	{Emirates Airline, Emirates Air}



Set	Instance	Label
{United States, U.S.}	USA	1
{United States, USA.}	UAE	0
{United Arab Emirates, UAE}	the Emirates	1
{United Arab Emirates, UAE}	Emirates Airline	0
{Emirates Airline}	Emirates Air	1
{Emirates Air}	the US	0

Experimental Results – Case Studies

• Example outputs on three datasets:

Dataset	Distant Supervision	Discovered Synonym Sets		
Wiki	{"londres", "london"}	{"gas", "gasoline", "petrol"}		
	{"mushroom", "toadstool"}	{"roman fort", "castra"}		
NYT	{"myanmar", "burma"}	<pre>{ "royal dutch shell plc", "royal dutch shell", "shell" }</pre>		
	{"honda motor", "honda"}	<pre>{"chief executive officier", "ceo" }</pre>		
PubMed	{"alzheimers disease", "Alzheimer's dementia"}	<pre>{"dna microarrays", "dna chip", "gene expression array", "dna array"]</pre>		

 Comparison of set-instance classifier with t prediction results:

Method	Set-instance Classifier	Aggregate Pair Predictions
Synonym set	{"u.k.", "britain"}	<i>{"u.k.", "britain"}</i>
Ranked terms	"uk" "united kingdom" "great britain" "elizabeth ii"	"uk" "indie" "united kingdom" "america"

• Comparison of set-instance classifier with the approach that aggregates instance-instance pair

- Synonym Set Discovery Task:
 - Given a corpus D, a knowledge base K, and a vocabulary V, output all entity synonym sets in V
- SynSetMine Framework:
 - Leverage Knowledge Base to obtain distant supervision
 - Learn an accurate set-instance classifier -
 - Integrate the set-instance classifier into an efficient set generation algorithm
- **Conclusions:**
 - Modeling a set holistically is important
 - Generating "diverse" set-instance pairs for training set-instance classifier is important

Future Work

- Extend SynSetMine to weakly-supervised setting:
 - Users provide a small set of "seed" synonym sets for model learning
- Extend SynSetMine's philosophy to other set prediction and clustering tasks:
 - Supervised Clustering
 - Metric Learning
- Further integrate set-instance classifier into them in an end-to-end fashion

• Further integrate set-instance classifier into the set generation algorithm and learn both of

Questions?

Thanks

